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Auxiliary Field Functional Integral Representation
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Finding an appropriate functional integral representation of the many-body evolution
operator is a crucial task for performing efficient calculations of fermionic systems
within the auxiliary field approach. In this paper we derive a new field representation
of the imaginary-time evolution operator using the method of Gaussian equivalent rep-
resentation of Efimov and Ganbold (19%hysica Status Solidi68 165). The goal is

to obtain a functional integral representation, in which the main divergences caused by
the tadpole Feynman diagrams are efficiently eliminated. These diagrams provide the
main contributions to the ground state of the system under consideration, and therefore
itis important to take them into account adequately, especially at lower temperatures. In
addition, we show that the well-known mean field representation of the imaginary-time
evolution operator is only the limiting case of the Gaussian equivalent representation in
the small time-step regime.

KEY WORDS: imaginary-time many-body evolution operator; Fermion systems; aux-
iliary field formalism; functional integral representation.

1. INTRODUCTION

In the past decade we noticed a rapid growth of interest in methods relying on
the auxiliary field functional integral approach due to their increased aptitude in
treating relevant problems of physics and chemistry. In this framework the original
imaginary-time many-body propagator is decomposed into a superposition of one-
body propagators, which formally describe a system of noninteracting particles
moving in a time-dependent auxiliary field. The resulting auxiliary field represen-
tation can then be employed to derive expectation values, which can be calculated
either in an analytical or numerical way.

Actually, the numerical techniques are most promising. They have recently
found first applications in quantum chemical calculations of atoms and small
molecules (Baer, 2000a,b, 2001; Baer and Neuhauser, 2000;eRain 1997,
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1998), as well as in statistical computations of classical many-particle systems
(Baeurle, 2000, 2002; Baeurét al, 2002). The goal of the so-called auxiliary
field quantum Monte Carlo (AFQMC) method (Charutz and Neuhauser, 1994,
Romet al, 1997, 1998; Silvestrelkt al, 1993), for instance, is to compute vari-

ous chemical properties of molecules, such as the ground-state energy or low-lying
excited-state energies, with high accuracy at affordable computational cost. An-
other worthy goal, particularly useful for larger systems of fermions, is also the
calculation of thermodynamic properties. It appears that in all these objectives,
the imaginary-time propagater?" plays a key role. At small temperatures it can

be utilized to project out the low energy manyfold of molecules, while at higher
temperatures it can be employed to compute the thermodynamic expectation val-
ues. The basic technique (Silvestredltial, 1993; Sugiyama and Koonin, 1986),
however, suffers from a convergence problem, called the numerical sign problem,
which causes a bad statistical convergence of the observable averages. To circum-
vent these convergence difficulties, several strategies have been conceived. The
most efficient one is the shifted-contour auxiliary field quantum Monte Carlo (SC-
AFQMC) method of Ronet al. (1997, 1998). It takes advantage of Cauchy’s inte-
gral theorem to accomplish an exact transformation of the auxiliary field functional
integral representation of the imaginary-time evolution operator. Recently, also a
classical auxiliary field Monte Carlo (AFMC) method (Baeurle, 2000; Baeurle
et al., 2002) has been developed, in which similar convergence problems could
be significantly reduced (Baeurle, 2002). This technique provides a framework
for performing classical statistical simulations of many-particle systems within

a continuum formalism, which can be particularly useful for multiscale model-
ing. Moreover, in the grand-canonical case it represents an alternative to standard
grand-canonical Monte Carlo methods.

The auxiliary field functional integral representation also constitutes a starting
point for various approximating schemes. For instance, one can derive the self-
consistent mean field (MF) approximation at finite temperature (Levit, 1980) by
applying the method of stationary phase. Moreover, by additionally considering
time-dependent fluctuations of the auxiliary field around the MF solution in the
Gaussian approximation, one can obtain the random phase approximation (Kerman
et al, 1983; Kerman and Levit, 1981). Besides, it is also worth mentioning that
within the auxiliary field formulation one can also apply approximation schemes
that are nonperturbative. One of the simplest is the static path approximation in
which the integral over a time-dependent auxiliary field is reduced to one of a time-
independent field (Lauritzen and Negele, 1991). Recently, new methods have also
been developed to go beyond these approximations by taking into account small
amplitude time-dependent fluctuations around the static value of the auxiliary field
(Attias and Alhassid, 1997).

A crucial aspect of all the methods mentioned previously is to deal with an
appropriate functional integral (FI) representation of the evolution operator, which
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is decisive for the efficiency of the calculation and/or validity of the approxima-
tion (Baeurle, 2000, 2002). The goal of this paper is to derive an alternative exact
representation of the auxiliary field functional integral of the evolution operator,
which remains useful beyond the small time-step regime. For this, we employ
the method of Gaussian equivalent representation (GER) of Efimov and Ganbold
(1991, 1995), which has recently proven to be very effective for improving the
statistical convergence of the AFMC method (Baeurle, 2002). The procedure effi-
ciently eliminates the main divergences caused by the so-called tadpole Feynman
diagrams by introducing the normal-ordered product of operators in the interaction
functional. From quantum field theory we know that these diagrams provide the
main contributions to the ground state of the system under consideration. As a
result we accomplish the transformation

F_ [ D0 devierewiel | R [ D9
detv +/detD

where the zero-order approximatiég is the best variational Gaussian es(tlmate
of the initial integral. The calculation of the perturbation corrections @veggive
us the additional contributions to the zero-order approximation
F=Fo+F+F+---. 2
Within this approach the Gaussian leading term takes care of all the quadratic
fluctuations around the ground state and the remaining higher orders for non-
Gaussian contributions, which can be calculated in an analytical or numerical way.
In other words, the GER methodology gives a guidance for how to find the most
optimal Gaussian functional measure for our Fl and provides a regular prescription
for the calculation of higher-order corrections to the lowest-order approximation.
Our paper is structured as follows. In Section 2 we review the derivation of
the basic field representation of the imaginary-time evolution operator followed,
in Section 3, by the derivation of the mean field representation (MFR) proposed
by Romet al. Then, in Section 4 we make use of the method of GER, to derive the
GER of the evolution operator. In Section 5 we show by analytical approximation
that the MFR of the evolution operator is only a first-order approximation of the
GER. Finally, we end the paper with a discussion of the main achievements and
the conclusions.

e ef%(o D’la)JrWD[a]

2. BASIC FIELD REPRESENTATION

To start, let us consider the imaginary-time propagator of a system of fermion
particles

U(B) = exp{—pH}, 3)

with the Ham|lton|an given byH = Ex + Ep = (Kp) + 2(pr) where
P, Y) = o 0= I/fs (X)¥s(y) is the electron density operator expressed in the
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formalism of second quantization. The operafois the positive Coulomb poten-
tial operator describing the electron—electron repulsion l&ral one-body term,
including the kinetic energy and the nuclear—electron attraction @&aes 1998;
Romet al,, 1997).

A central step of the derivation is to apply the complex Hubbard—Stratonovich
(HS) transformation (Baeat al., 1998)

e—%(rAr) — CA/DNSe—%(sAs) g i(sAn) (4)

with C, = [det(A)(27)~N]¥2, which replaces the calculation of the full propa-
gator with a simpler calculation of an ensemble average of single-particle prop-
agators; that is, the HS transformation formally substitutes the electron—electron
repulsion with an electron-field interaction. For its application one makes use of
the Trotter separation to break the imaginary-time propagator into a large number
M of short-time propagators with time-steqx = /M

e " — lim (e’%Ek e ng)M ~ @ EkAT g-EpAt | oEkAT g-EpAT

Since the operatdg, is in a quadratic form with respect to the density operator
we can apply the complex HS transformation (4) to each{eXp, At} according
to

ef%(,on)At _ CV / ,DO'I ef%(atha,m)Ar efi(armV,o)Ar, (5)
which provides the imaginary-time propagator in its basic field representation

U@) =eH = C\'}A /Dg ez Zm:l(ofmvﬂtm)AT_Zr’\r/]l=1((K+iUrm)p)AI, (6)

whereCy = [det(V)(Az/27))NY2 and Do = [[M_, Do, is the integration
measure over all the field variables. For the sake of simplicity we here just
consider ground state properties, for which one can define a pseudopartition
function

Z(B. Ne) = (®(0)|U (8)| (0)) = / Dyrylo] €171, @

with the Gaussian measufuy [0] = CM Do exp{—% Zn"le(ofmvgrm)Ar} and
the interaction functional
M
Wy[o] = In [ J(@(0)je”® 2+ m¥oe o (0)), (8)
m=1
where the initialNe-electron wave functiond(0)) is typically chosen as a con-
ventional Slater-determinant. Substituting into the respective standard
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thermodynamic relation, we finally get the desired ground state expectation value
of the observabl® with the formula

©) = fim [ PavlelO@) el

B—00 ID/-’LV[O'] eVT/V[U] (9)

For further details concerning the basic derivation, we refer to Rbah. (1997)
and Baeet al. (1998).

The above multidimensional integral over the field variables should now be
evaluated in an analytical or numerical way. However, since the resulting integrand
is complex, this is generally an unfeasible task at lower temperatures or/and large
system-sizes. For instance, a straightforward use of standard MC methods is faced
with the well-known sign problem due to strong oscillations of the original distri-
bution resulting in large statistical fluctuations (Silvestretlal., 1993; Sugiyama
and Koonin, 1986).

3. MEAN FIELD REPRESENTATION

It has recently been recognized by Ranal. (1997) that an alternative
exact representation of the imaginary-time evolution operator is more useful in
numerical application. Their strategy bases on Cauchy'’s integral theorem, which
guarantees that the FI (7) is invariant with respect to a deformation of its integra-
tion path. It consists in shifting the contour away from the real axis to cross
the domain of integration in vicinity to the imaginary stationary point corre-
sponding to the MF solution. In cases where the largest contribution to the FI
comes from the region near to this critical point a significant reduction of the
fluctuations can be achieved. Rash al. (1997, 1998) and Baest al. (1998)
found out that an overwhelming part of the sign problem is removed by taking
proper account of the fermion MF contribution, which is achieved, for example,
when an approximate density calculated on the Hartree—Fock level of theory is
employed.

Baeret al. (1998) have subsequently provided a rigorous theoretical basis to
this methodology. They have recognized that one properly shifts the integration
contour through the imaginary stationary point, only if one makes use of the exact
one-electron density. As a result one obtains the so-called MFR of the FI. For
practical purposes it is however sufficient to use an approximated density of the
quality mentioned previously.

To derive the MFR of Baeet al, let us now consider the matrix element of
the evolution operator in a single time sliee—~ t + At (Baeret al,, 1998),

Z(B, Ne) / Dpylor], M7l = 7,, (10)
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whereDuy [o] = Cy Do, exp{—3(o.Vor)At}and
Wy o] = IN(®(8 — 7)] e (DA 1OV (7 — AT)). (11)

Each short-time propagator is independently stabilized by adding a constant shift
to each field,, i.e.

O’-,;(X, y) - O’-L-(X, y) - iOll—(X, y)! (12)
wherea, (X, Y) is an arbitrary function called the shifting function. We then get
2, = eeverns [ pyuyfo] el (13)
with
VT/(,[GT] = In(®(B — T)le(K,o)Af—i(apr)Ar—(apr)AT|CD(_L, — A7)
+i(0.Va,) (14)

To derive the MF solution, one has to choose the ghifh such way thaVT/(,[a,]
is insensitive to first-order changes in the auxiliary fieldi.e.

Wylo:] . (@B = Dlp(x, VIP())
Tho, Ve (V (®(B — 7)) ) =0 @
The stationary condition thus provides the following solution:
o (. y) — (BB = DIp(x VIO 16)

(@(B — 1)IP(7))
We note that the resulting shidt, is a matrix element of the exact one-electron
density matrix normalized by the matrix element of the evolution operator. Under
the assumption tha, 7, 8 — © — oo, the above expression leads to

(Dgslp(X, ¥)|DPgs)
(Dgs|(Dgs)

where ®ys represents the exact ground state wave function (@i, y))gs the

exact ground state one-electron density. Moreover, it is also worth emphasizing that

a: (X, y) = (p(X, y))gsfor p — oo andtherefore becomesindependent ofthe time
7. Finally, substituting the shifting function in FI (13), we obtain the MFRZgf

(02 (X1 y) = = (,O(X, y))gS! (17)

4. GAUSSIAN EQUIVALENT REPRESENTATION

To derive the GER of the evolution operator, let us again consider the matrix
element in single time slice defined in Eq. (10). For the derivation we make use
of the method of GER of Efimov and Ganbold (1991, 1995), which provides an
optimized representation of the Fl in the strong coupling regime with the advanta-
geous property that the influence of the oscillatory interaction functional is small
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compared to the quadratic term. It is supposed that in this regime the Fl remains of
the Gaussian-type, but with another Green function in the measure. The technique
is generally applicable to Fls of the following type:

= / Diioyle] explgWoo[e]). (18)

whereg is the coupling constant and

Wi, [¢] = / dv, €@ (19)

is the interaction functional witldv, as the functional measure andy =

[ dy a(y)e(y). The Gaussian measuf®up,[¢] = Cp, Dy expi—3(¢Dgy'p)} is
normalized in such a way thgtDup,[¢] - 1 = 1. We can easily reformulate the

FI (10) in the form of (18) by performing the substitutiop = (At)~Y2(V~1s})
and immediately dropping the prime. We then get

Z. = [ Duy[o,]eVviod, (20)
whereDuy[o.] = C{, exp{—3(o.V ~to;)} with C{, = [det(V)(27)N]~%/2 and

Wy [o:] = In(®(8 — )| e KIAT—iEnVAT |p(r — AT)). (21)

We subsequently expand the functionsl, in a Taylor series (Parr and Yang,
1998)

Wy[o:] = Wy[o, = 0]

x 1 sMWy [0 ]
* Zﬂf / / (aof(xl, y1)0 (%2, yz)-.-aor(xn,yn)>gf=o

X 07 (X1, Y1)z (X2, ¥2) - - - 0 (Xn, Yn) A% dXo - - - A%y dyr dyo - - - d i,
(22)

and then define the interaction functional as
Wy [o;] = Wy[o:] — Wy[o, = 0] = / dxe dyr o (x1, y1)]  (23)

with

1 31 Wy [or]
Alocba. yo)l = ;F/ -/ (&a(xl, y)60: (%, y2)~--ao,(xn,yn>>(,,o

X 0z (X1, Y1)or (X2, ¥2) - - - 0r (X, Yn) AXo - - - Xy d Yo - - - A Y.
(24)
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Solving Eq. (23) folWy [o;] and inserting it in Eq. (10), we get

2, =100 [ Diuyfor) i, (25)
where
Wy[o, = 0] = In(®(8 — 7)| e K27 o(r — A7)). (26)

We see that one recovers the integral representation (18), if one rewtjifes] in
form of expression (19). This is achieved by reformulatije, (X1, y1)] in terms
of its Fourier transform

o, ) = [ S S et (27)
with
(ko) = [ v k300 = i 2 — Yoo 4 ), (28)

where the functional measude, dy; dk/(27) J(k) = dva = dv,. Next, we per-
form a parallel shift of the integration contour of FI (25) along the real axis

or (X, y) = oe(X, y) — iz (X, y) (29)
and replace its Gaussian weight according to
VX, y;i X, Y) = DX, VXL YY), (30)

whereD(X, y; X/, ¥') is an appropriate Green function of the differential operator
D1 satisfying the relation
/dy dy D7Y(x, X;y, Y)D(Y, Y; 2, Z) = 8(x — 2)8(X' — Z). (31)

The FI (25) then takes the form

detD Wv[Ur Wploe,az, D]
zo= |50 ex p{ (@ V- af)} | [ Duolote (32)

where
1
WI/D[O"U Qr, D] = WV[Gr - iar] + i(arv_lar) - E(Ur[v_l - D_l]ar) (33)

and Duplo.] = CpDo, exp{%(aID—l)} obeying the normalization condition
[ Duolo] 1=1.

From quantum field theory we know that the tadpole Feynman diagrams
provide the main quantum contributions to the ground state of the system under
consideration (Efimov and Ganbold, 1995). Since with growgnigs influence
becomes more significant, it is important to take them into account in an adequate



Auxiliary Field Functional Integral Representation of Many-Body Evolution Operator 1923

way. In quantum theory the main divergences caused by these diagrams are effi-
ciently eliminated from consideration if the normal-ordered product of operators
is introduced in the interaction Hamiltonian. According to this strategy, the inter-
action functional in (32)W},, must be reformulated in normal-ordered form. For
this, we make use of the concept of the normal product according to the given
Gaussian measuf®up, in the following way:

ei(ka,) —: ei(ka,) : ef%szdxjdyldxj’dyl’o(xlfx’l;yry/l)D(xi,yj;xf,yf)a(xlfxf;yryf)

= ei(k”f) e_%kzD(XlayﬂXlryl)' (34)
so that:

/ Duplo.]: k) =1, / Duplo:] : oc(X1, Y1) - - 0 (Xn, Yn) := 0.
(35)

If we take into account thad” = 1+ z+ z2/2 + € and insert this relation in
Eqg. (34), we obtain
d®) = 1 4i(ko,) — %(ka,)2 + &) g DY)
— o 2¥D0w YLy e_%kzD(leylixlxyl)(ko-T) (36)
_ % : (kop)? e 3K°D0a YY) 4 %i(kaz) - @~ Tk DXL y1Xa, Y1)

Introducing Eq. (36) in the functional

i . 1
W|,D[GT! o, D] = /dvk glkerr) gl herr) +1 (O[TV_:LGT) - E(Ur[v_l - D_l]or)y

(37)
we obtain

Wplo:, ar, D] = /dvk glke) I:e_%kzD(XLyl:Xl,yﬂ

+ie DY) (kg ) — = (Ko )? : @ 2D yaxa.y)
2

+ eiz(ka,) : e;kZD(xl,yl;xl,yl)] + i(ot,Vil(TT)
1 -1 —1
- é(ar[v — D™ ]oy). (38)

Afterwards, ordering the terms of the functional in powers gfthis results in

WI/D[OII Oz, D] = /dl)k e(ka,) e—%kzD(XLyl;xl,yl)
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+ |:i /dvk elkar) e*%kzD(Xl,yl;xlyyl)(kar) +i (afVlUT):|
1 k —1k?D ; 2

—Z1: | dw glkar) o= 3 (xl,y1,xl,y1)(kgr) :
2

+ (0, [V = D‘l]o,):| + / dvy e e 2K*D(x,y1ix1, 1)

X (%(k"’) . (39)
The concept of the normal product implies that
or (X, Y)o (X, Y) =t 0e(X, Y)or (X', ¥) 1 + DX, y: X, Y), (40)

which permits to reformulate the quadratic termin

: 1
Wg[o;, o7, D] = |:/ dvy glkerr) g zKDOayaxay) _ 5([V_1 - D_l]D):|
+ [I /dvk glkatr) e—%kZD(x1vy1;X1,Y1)(th) +i (afv_ldt):|
1 k —1k?D ; 2
- /dvk glker) @2k Dlayix ) (kg )
2

+ (oe[VT = Dl]at)} - / dy etkee) @ 2K D0w i)
X e,iz(k”’) . (41)

Now, we demand that the linear and quadratic terms in the integration variable
o-(x, y) should be absent in the interaction functioi®}, in (41). These two
conditions provide us with the GER equations:

i / duy ek) @ 2K POaYX) (ke ) + i (o, V Lop) = 0, (42)

/ d elker) e—%kzD(xl,yl;xl,yl)(kUT)Z + (0:[V"' = D Yo,) =0,

which after rearrangement give vs, respectively, an equation for thexsfifty)
and the new Gaussian weigb{(x, y; X', y'):

(. y) = - f dx dy V(X y; X, y)hle (X, Y], (43)
DO, yix',y) = V(XY X’,y’)—/dX”ds/’V(X”, y'ix,y)

X J2[O[I (X//, y”)] D(X1 Yy, X”! y//)i (44)
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where
dk, = — K2 D(X,Y:X,y) a(kar)
A ] = [ 5ok D g, (@5)
dk 27 —1Kk2D(x,y;x,y) a(kar)
Bl )] = [ 51IE T D g, (46)

As a result we obtain a new exact field representation of the imaginary-time evo-
lution operator, i.e. the so-called GER

Z,=¢e FO/dMD gholo:l, (47)
where
Woo.] = /dvk glkar) g~ 3KD(x1,y1ix1, 1) - ko) (48)
is the new interaction functional and

. 1 D 1 -1 1 -1 -1

— /dvk e(kaz)e*%kZD(Xl,yl:xl,yl) (49)

the zero-order approximation @ . Since the exponential within the double dots

in Eq. (48) now only contains terms of higher order than two, we can expect that
the new FI formulation is more suitable for numerical and analytical calculation
than the original one.

5. FIRST-ORDER APPROXIMATION OF THE
SHIFTING FUNCTION

To derive the first-order approximation of the shifting function, we consider
the functional expression (45),

dk, - 1 :
Jl[ar (X, y)] — f Zk‘](k) e—EkZ D(x,y:X,y) e(k(lr), (50)
in whichkJ(k) can be written as (for further details, see Appendix A)

~ 5J[a,(x ¥l R
kJ(k) = / da, / dx'dy ————== ACEY) expl—i (ka-)], (51)

with

) e §MWy [o]
oGl = Zn'f | (&n(x,y)aof(xZ,yz)---aof(xn,yn)),,:o

X 07 (X, Y)ar (X2, Y2) - - - G (Xn, Yn)dXo - - - dXa dyz - - - dyn. (52)
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It can easily be shown that thth-order functional derivative is proportional to
(At)"2, Therefore, truncating the functiona|a. (x, y)] at low order is a reason-

able approximation of the GER shifting function for small. Here we truncate

the functional at first order and obtain

~ ~ 31VVV[UT] ~
ey = (St) e 9
where
Wy o] = In(®(B — )| e KAA-TEnVa gz — At)), (54)

which provides the first-order derivative
(slv‘vv[of]> AT (B — Dlp(x, y) e (ANTEAVE P — AL))
80:(%,Y) )00 (®(B — 1)| e (K)At-ilo VAL (7 — At))

(D(B — 7)p(x, Y)|())
= -iVAL (@B —1)ok)

Introducing expression (53) into expression (51), we approximately g&tfgs)

(55)

51VT/V [o7]
do; (X1 y)

Then, inserting the above expression into the functicghpt, (x, y)], we obtain
its first-order approximant

10, y) = = 8 Wy (o] / dé / o 2D yox K- H(ae) i G
e i \ so:(x, ) /., o
(57)

kJ(k) ~ % ( )m_o / dé. expl—i (ki.)]. (56)

whereD®(x, y; x, y) = V(X, y; X, y) > 0 (see also Appendix B).
For the explicit evaluation of integral (57) we use the following Gaussian
integral relation (Gobner and Hofreiter, 1966)

/OO exp[—(ax? 4 2bx + ¢)] dx = \/g exp[bz ; ac] (58)

with a > 0, which leads to

@ 1 lWV[Gr]
I y) = i <(Sar(x y) )o 0271,/ \/m

[(a‘[ - |(05r)]
) eXp[ZV(x, Y; X, y)]
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1 (8'Wy[o] 1
T ( So: (X, y) )01:0 27V (X, Y; X, Y)

T 2_2- T ~1: - N‘L’ 2
x f dé, exp[(a) 2v|(§<a ;((:( )y) (@) ] (59)

Performing the remaining Gaussian integral with the integral relation (58), we
finally get for the first-order approximant df(x, y)

W oy L(EWlod) (BB~ D)la(x, Y)I @)
1069 =F (Gt o™ 5 oo

i
The first-order approximant of the GER shifting function is thus given by

(®(B — 1)lp(X, Y)[P(7))

(60)

1) _ / NS
a®(x, y) = «/A_t/ dx' dy V(X, ¥;X,Y) BB (61)
or alternatively by
O, y) = (2B = DIp NI ©2)

(®(B—1)| ®(r))

under the assumption of the substitutigh= (V ~ta,)/+/At.

6. DISCUSSION AND CONCLUSIONS

By analyzing expression (62), we see thatitis identical to the shifting function
used by Baeetal, i.e., expression (16). Therefore, we can conclude that their result
is only a first-order approximation of the GER methodology, which becomes a
valuable approximation of the exact GER shifting function for smdll It also
demonstrates that the GER methodology is the underlying theory containing the
MFR approach as a limiting case.

In conclusion, the above derivation provides a strong indication that the GER
is a more useful representation for analytical and numerical calculation than pre-
viously proposed representations. Currently, work is in progress employing the
methodology in conjuction with the AFQMC method in quantum chemical appli-
cations (Baeurlet al,, in preparation).
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APPENDIX A

To derive an explicit expression farJ(k), let us consider the Fourier repre-
sentation of)[a. (X, Y)],

dk ~ = .
o, ) = [ 5 3t (A1)

By taking the functional derivative with respect 4@ and integrating over the
variablesx’ andy’, we get

o (X, . dk - ’ ’ N\ Al (Ko
/dx’dy% =|/£kJ(k)/dx dys(x — Xy — ) e ke

=i / g—:kj (k) & (kere), (A2)

Then, multiplying the equation with expf (ka.)] and integrating ovew., this
results in

8J[o, . . dk - "
/daf/d dy [a (/ y)] Xp[_|(ka1—)] = /doeT/—k/J(k/) e|([k —k]Otr)
Sar (X', Y') 2w
=ik J(K).
where we have taken into account that the integral on the right-hand side is the
Fourier representation of thefunction. B
Next, we wish to derive an explicit expression #3rJ (k). To this end, we

take the second-order functional derivative with respeet;tand integrate over
the variables<, y’ andx”, y”. Then, we obtain

/ 1/ '/ SJ[aT (X' y)]
/ Xy Xy e oa (.Y

k .~
- _/ s_sz(k) f dx dy dx'dy's(x — X;y — y')
T

) dk - )
x 8(x — X"y —y") k) = —/ Zsz(k) g (ker), (A3)

We subsequently multiply the equation with exp{ke,)] and integrate oved.,
which finally gives

/d“f/dx’d)/dx”dy’ 8oz (%, Y)]

ot (X', Y)darr (X", y")

/ da, / —K2J(K) UK -Ke) = k2 (k). (A4)

expl—i (ka)]
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APPENDIX B

To perform the integration, we must ensure that the first-order approximant
D® of the new Gaussian weigh is positive. For this, let us consider the func-
tional (46)

K o~ .
-JZ[CYT(X, y)] — / dEkZJ(k) e—%kZD(X,y,X,y) e(kaf), (Bl)

wherek2J(k) can be explicitely expressed as (see Appendix A)

27 ~ / 1" ’ 8‘][5[1 (X! y)] s~
k“J(k) = —/da,/dx dy dx’dy 58, (0. Y )05 (" y) exp[—i (ka,)].
(B2)
By introducing the first-order approximant df{a.(x, y)], i.e. expression (53),
into expression (B2), it can easily be demonstrated thﬁ?(x, y) &~ 0,
because

SIEOY]
| S, s oy X Y 8 4 ~ 0, ()

and therefore
DO, y; X, y) = V(X, y; X, y). (B4)
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